Title: | Estimating a GARCHSK Model and GJRSK Model |
---|---|
Description: | Functions for estimating a GARCHSK model and GJRSK model based on a publication by Leon et,al (2005)<doi:10.1016/j.qref.2004.12.020> and Nakagawa and Uchiyama (2020)<doi:10.3390/math8111990>. These are a GARCH-type model allowing for time-varying volatility, skewness and kurtosis. |
Authors: | Kei Nakagawa [aut, cre]
|
Maintainer: | Kei Nakagawa <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.0 |
Built: | 2025-02-06 03:55:30 UTC |
Source: | https://github.com/cran/GARCHSK |
Functions for estimating GARCHSK model and GJRSK model based on a publication by Leon et,al (2005).
This function constructs GARCHSK model of given data and parameters.
garchsk_construct(params, data)
garchsk_construct(params, data)
params |
vector of GJRSK model parameters(p1,const2,p2,q2,const3,p3,q3,const4,p4,q4) |
data |
vector time series data |
list of conditional mean(mu), variance(h), skewness(sk) and kurtosis(ku)
This function estimates GARCHSK model's parameters.
garchsk_est(data)
garchsk_est(data)
data |
vector time series data |
list of parameters,standard errors of parameters,t-statistics,the minimum value of log-likelihood,AIC and BIC.
library(GARCHSK) #load data data(GBP) # Estimate the parameters of GARCHSK model garchsk_GBP<-garchsk_est(GBP[1:100]) # Parameters garchsk_GBP$params
library(GARCHSK) #load data data(GBP) # Estimate the parameters of GARCHSK model garchsk_GBP<-garchsk_est(GBP[1:100]) # Parameters garchsk_GBP$params
This function forcasts conditional mean,variance,skewness and kurtosis with given GARCHSK model.
garchsk_fcst(params, data, max_forecast = 20)
garchsk_fcst(params, data, max_forecast = 20)
params |
vector of GARCHSK model parameters(p1,const2,p2,q2,const3,p3,q3,const4,p4,q4) |
data |
vector time series data |
max_forecast |
how long does this function forecast(Default value is 20) |
list of predicted conditional mean,variance,skewness and kurtosis
This function is inequality equation of GARCHSK parameters used in optimization process(Rsolnp).
garchsk_ineqfun(params, data)
garchsk_ineqfun(params, data)
params |
vector of GARCHSK model parameters(p1,const2,p2,q2,r2,const3,p3,q3,r3,const4,p4,q4,r4) |
data |
vector time series data |
upper bound >parameters > lower bound
This function calculates the log-likelihood of GARCHSK model.
garchsk_lik(params, data)
garchsk_lik(params, data)
params |
vector of GARCHSK model parameters(p1,const2,p2,q2,const3,p3,q3,const4,p4,q4) |
data |
vector time series data |
(negative) log-likelihood of GJRSK model
GBP/USD exchange rate from 1990-01-03 to 2002-5-3 from Bloomberg.
A numeric vector with 3218 length
Bloomberg(GBP CURRNCY)
This function constructs GJRSK model of given data and parameters.
gjrsk_construct(params, data)
gjrsk_construct(params, data)
params |
vector of GJRSK model parameters(p1,const2,p2,q2,r2,const3,p3,q3,r3,const4,p4,q4,r4) |
data |
vector time series data |
list of conditional mean(mu), variance(h), skewness(sk) and kurtosis(ku)
This function estimates GJRSK model's parameters.
gjrsk_est(data)
gjrsk_est(data)
data |
vector time series data |
list of parameters,standard errors of parameters,t-statistics,the minimum value of log-likelihood,AIC and BIC.
library(GARCHSK) #load data data(GBP) # Estimate the parameters of GJR-SK model gjrsk_GBP<-gjrsk_est(GBP[1:100]) # Parameters gjrsk_GBP$params
library(GARCHSK) #load data data(GBP) # Estimate the parameters of GJR-SK model gjrsk_GBP<-gjrsk_est(GBP[1:100]) # Parameters gjrsk_GBP$params
This function forcasts conditional mean,variance,skewness and kurtosis with given GJRSK model.
gjrsk_fcst(params, data, max_forecast = 20)
gjrsk_fcst(params, data, max_forecast = 20)
params |
vector of GJRSK model parameters(p1,const2,p2,q2,r2,const3,p3,q3,r3,const4,p4,q4,r4) |
data |
vector time series data |
max_forecast |
how long does this function forecast(Default value is 20) |
list of predicted conditional mean,variance,skewness and kurtosis
This function is inequality equation of GJRSK parameters used in optimization process(Rsolnp).
gjrsk_ineqfun(params, data)
gjrsk_ineqfun(params, data)
params |
vector of GJRSK model parameters(p1,const2,p2,q2,r2,const3,p3,q3,r3,const4,p4,q4,r4) |
data |
vector time series data |
upper bound >parameters > lower bound
This function calculates the log-likelihood of GJRSK model.
gjrsk_lik(params, data)
gjrsk_lik(params, data)
params |
vector of GJRSK model parameters(p1,const2,p2,q2,r2,const3,p3,q3,r3,const4,p4,q4,r4) |
data |
vector time series data |
(negative) log-likelihood of GJRSK model
This function calculates kurtosis of given data.
kurtosis(data)
kurtosis(data)
data |
vector or T by 1 matrix |
kurtosis of given data
This function calculates skewness of given data.
skewness(data)
skewness(data)
data |
vector or T by 1 matrix |
skewness of given data